Tobacco flavors are extensively utilized in traditional tobacco products, electronic nicotine, heated tobacco products, and snuff. To inhibit fungal growth arising from high moisture content, preservatives such as benzoic acid (BA), sorbic acid (SA), and parabens are often incorporated into tobacco flavors. Nonetheless, consuming preservatives beyond safety thresholds may pose health risks. Therefore, analytical determination of these preservatives is crucial for both quality assurance and consumer protection. For example, BA and SA can induce adverse reactions in susceptible individuals, including asthma, urticaria, metabolic acidosis, and convulsions. Parabens, because of their endocrine activity, are classified as endocrine-disrupting chemicals. Despite extensive research, the concurrent quantification of trace-level hydrophilic (BA and SA) and hydrophobic (methylparaben, ethylparaben, isopropylparaben, propylparaben, butylparaben, isobutylparaben, and benzylparaben) preservatives in tobacco flavors remains challenging. Traditional liquid phase extraction coupled with high performance liquid chromatography (HPLC) often results in high false positive rates and inadequate sensitivity. In contrast, tandem mass spectrometry offers high sensitivity and specificity; however, its widespread application is limited by laborious sample preparation and significant operational costs. Therefore, it is crucial to establish a fast and sensitive sample pretreatment and analysis method for the nine preservatives in tobacco flavors. In this study, a method for the simultaneous determination of the nine preservatives (SA, BA and seven parabens) in tobacco flavor was established based on three phase-hollow fiber-liquid phase microextraction (3P-HF-LPME) technology combined with HPLC. To obtain the optimal pretreatment conditions, extraction solvent type, sample phase pH, acceptor phase pH, sample phase volume, extraction time, and mass fraction of sodium chloride, were examined. Additionally, the HPLC parameters, including UV detection wavelength and mobile phase composition, were refined. The optimal extraction conditions were as follows: dihexyl ether was used as extraction solvent, 15 mL sample solution (pH 4) was used as sample phase, sodium hydroxide aqueous solution (pH 12) was used as acceptor phase, and the extraction was carried out at 800 r/min for 30 min. Chromatographic separation was accomplished using an Agilent Poroshell 120 EC-C18 column (100 mm×3 mm, 2.7 μm) and a mobile phase comprising methanol, 0.02 mol/L ammonium acetate aqueous solution (containing 0.5% acetic acid), and acetonitrile for gradient elution. Under the optimized conditions, the nine target analytes showed good linear relationships in their respective linear ranges, the correlation coefficients (r) were ≥0.9967, limits of detection (LODs) and quantification (LOQs) were 0.02-0.07 mg/kg and 0.08-0.24 mg/kg, respectively. Under two spiked levels, the enrichment factors (EFs) and extraction recoveries (ERs) of the nine target analytes were 30.6-91.1 and 6.1%-18.2%, respectively. The recoveries of the nine target analytes ranged from 82.2% to 115.7% and the relative standard deviations (RSDs) (n=5) were less than 14.5% at low, medium and high levels. The developed method is straightforward, precise, sensitive, and well-suited for the rapid screening of preservatives in tobacco flavor samples.