Compared with traditional cellular networks, cloud wireless access network (C-RAN) can save more energy consumption because it centrally processes the signals in the baseband unit (BBU) pool served by the cloud platform. Aiming at the limited fronthaul capacity of the fronthaul link caused by massive data and the huge energy consumption caused by the explosive growth of mobile traffic, an energy-saving resource management scheme that is powered by a mixture of on-grid and green energy is proposed in this paper. Specifically, a new network energy efficiency (EE) model is constructed. The RRH with hybrid energy to supply power of the model in response to green communication and the model can also realize two functions: information decoding and wireless charging at the same time. The total power consumption including remote radio head (RRH), fronthaul link, BBU pool, and wireless charging equipment of user equipment is considered. Based on network energy efficiency model, in addition to considering the user’s quality of service (QoS), data rate requirements, transmission power of RRHs, and maximum battery capacity constraints, the constraints of fronthaul link capacity constraints also are considered in this paper. In order to solve the proposed optimization problem, a joint strategy of power allocation, resource block (RB) allocation, and power allocation ratio adjustment is proposed in this paper. However, the objective function of energy efficiency optimization problem is nonconvex and cannot be solved directly. Therefore, an equivalent convex feasibility problem is reconstructed, and the optimal solution is obtained by Lagrange dual decomposition method. Simulation results show that the proposed resource allocation scheme can provide higher energy efficiency for the network.
Read full abstract