Abstract

The next radio access network (RAN) generation, open RAN (O-RAN), aims to enable more flexibility and openness, including efficient service slicing, and to lower the operational costs in 5G and beyond wireless networks. Nevertheless, strictly satisfying quality-of-service requirements while establishing priorities and promoting balance between the significantly heterogeneous services remains a key research problem. In this paper, we use network slicing to study the service-aware baseband resource allocation and virtual network function (VNF) activation in O-RAN systems. The limited fronthaul capacity and end-to-end delay constraints are simultaneously considered. Optimizing baseband resources includes O-RAN radio unit (O-RU), physical resource block (PRB) assignment, and power allocation. The main problem is a mixed-integer non-linear programming problem that is non-trivial to solve. Consequently, we break it down into two different steps and propose an iterative algorithm that finds a near-optimal solution. In the first step, we reformulate and simplify the problem to find the power allocation, PRB assignment, and the number of VNFs. In the second step, the O-RU association is resolved. The proposed method is validated via simulations, which achieve a higher data rate and lower end-to-end delay than existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call