Quantitative assessment of cracks in concrete bridges is crucial for structural health monitoring and digital twin. However, the training of crack segmentation models relies heavily on annotation resources, and their segmentation capabilities are often unsatisfactory in terms of the accuracy of boundary location of thin cracks encountered in practice. In this paper, an active-learning-integrated crack segmentation transformer (ACS-Former) framework is proposed to maximize segmentation performance with limited annotation resources. The two-branch ACS-Former includes (1) a feature pyramid transformer (FPT) for multi-scale crack segmentation and (2) boundary difficulty-aware active learning (BDAL) to select informative images for labeling and incorporation into FPT training. Additionally, an adhesive climbing robot is proposed for image collection of hard-to-access components of large bridges. The on-site operational feasibility and practicability of the proposed ACS-Former and climbing robot are demonstrated by field experiments performed on in-service bridges, including the quantification of cracks narrower than 0.2 mm, as required by engineering codes.
Read full abstract