Given [Formula: see text], we study two classes of large random matrices of the form [Formula: see text] where for every [Formula: see text], [Formula: see text] are iid copies of a random variable [Formula: see text], [Formula: see text], [Formula: see text] are two (not necessarily independent) sets of independent random vectors having different covariance matrices and generating well concentrated bilinear forms. We consider two main asymptotic regimes as [Formula: see text]: a standard one, where [Formula: see text], and a slightly modified one, where [Formula: see text] and [Formula: see text] while [Formula: see text] for some [Formula: see text]. Assuming that vectors [Formula: see text] and [Formula: see text] are normalized and isotropic “in average”, we prove the convergence in probability of the empirical spectral distributions of [Formula: see text] and [Formula: see text] to a version of the Marchenko–Pastur law and the so-called effective medium spectral distribution, correspondingly. In particular, choosing normalized Rademacher random variables as [Formula: see text], in the modified regime one can get a shifted semicircle and semicircle laws. We also apply our results to the certain classes of matrices having block structures, which were studied in [G. M. Cicuta, J. Krausser, R. Milkus and A. Zaccone, Unifying model for random matrix theory in arbitrary space dimensions, Phys. Rev. E 97(3) (2018) 032113, MR3789138; M. Pernici and G. M. Cicuta, Proof of a conjecture on the infinite dimension limit of a unifying model for random matrix theory, J. Stat. Phys. 175 (2) (2019) 384–401, MR3968860].
Read full abstract