Phase reduction is a well-established technique for analysis and control of weakly perturbed limit cycle oscillators. However, its accuracy is diminished in a strongly perturbed setting where information about the amplitude dynamics must also be considered. In this paper, we consider phase-based control of general limit cycle oscillators in both weakly and strongly perturbed regimes. For use at the strongly perturbed end of the continuum, we propose a strategy for optimal phase control of general limit cycle oscillators that uses an adaptive phase-amplitude reduced order model in conjunction with dynamic programming. This strategy can accommodate large magnitude inputs at the expense of requiring additional dimensions in the reduced order equations, thereby increasing the computational complexity. We apply this strategy to two biologically motivated prototype problems and provide direct comparisons to two related phase-based control algorithms. In situations where other commonly used strategies fail due to the application of large magnitude inputs, the adaptive phase-amplitude reduction provides a viable reduced order model while still yielding a computationally tractable control problem. These results highlight the need for discernment in reduced order model selection for limit cycle oscillators to balance the trade-off between accuracy and dimensionality.