A likelihood ratio test, recently developed for the detection of signals of adverse events for a drug of interest in the FDA Adverse Events Reporting System database, is extended to detect signals of adverse events simultaneously for all the drugs in a drug class. The extended likelihood ratio test methods, based on Poisson model (Ext-LRT) and zero-inflated Poisson model (Ext-ZIP-LRT), are discussed and are analytically shown, like the likelihood ratio test method, to control the type-I error and false discovery rate. Simulation studies are performed to evaluate the performance characteristics of Ext-LRT and Ext-ZIP-LRT. The proposed methods are applied to the Gadolinium drug class in FAERS database. An in-house likelihood ratio test tool, incorporating the Ext-LRT methodology, is being developed in the Food and Drug Administration.