Differential resistance of four Triticum aestivum L. genotypes to isolates of take-all fungus (Gaeuman-nomyces graminis var. ritici Walker) was tested in a complete factorial experiment set up in a growth chamber using Mn-deficient Wangary sand amended with four rates of Mn. Mn-efficient cultivars produced more dry matter at low supply of Mn. Fertilization with Mn significantly increased its accumulation in roots and shoots. The most sensitive measure of take-all infection was the total length of root stellar lesions; these lesions were reduced by Mn fertilization and were shorter in Mn-efficient genotypes. The resistance-enhancing effect of Mn was the most obvious in the Mn-inefficient genotype (Bayonet) and the least obvious in the Mn-efficient one (C8MM). Phenolics biosynthesis in roots was clicited by fungal infection, especially in the case of the highly virulent isolate. The weakly virulent isolate increased phenolics concentration in roots much more if no Mn was added, indicating that the resistance-enhancing effect of Mn may not be directly exerted through the effects on phenolics biosynthesis. Lignin concentration in roots decreased due to Mn fertilization, while no effect of take-all infection was noted. It appears that biosynthesis of phenolics and lignin in wheat roots has a low Mn requirement which can be satisfied at environmental Mn concentrations below those necessary for optimum plant growth. ei]Section editor: A C Borstlap ei]Section editor: H Lambers
Read full abstract