We have developed conductive, lightweight, and porous composite of polyvinylidene difluoride by blending with synthesized conjugated terpolymer and graphene for conductive polymer composite applications. The new conjugated terpolymer designated as PEPy-TP is synthesized from 3,4-ethylenedioxythiophene, 1-pyrenecarboxzaldehyde, and heptaldehyde through friedel craft reaction. The synthesized terpolymer PEPy-TP have been blended with polyvinylidene difluoride and graphene nanosheets to form porous composite and has been characterized using XRD, TGA, TG-DSC, DTA, DTG, SEM, EDX, and Dielectric spectroscopy. The porous composite is comprised of varying weight percentages of (1, 3, and 5%) of GNS and 10 wt% PEPy-TP in PVDF. The thermal studies on the porous composites indicated that the decomposition occurred at a temperature around 270 and 470 °C corresponds to the PEPy-TP and PVDF/PEPy-TP/GNS (1, 3, and 5%), respectively. The EDX spectrum of neat PEPy-TP polymer and their porous composites of PVDF/PEPy-TP/GNS (1, 3, and 5%) result clearly shows the presence of all elements, such as C, O, S, and F with an atomic weight percentage also. The PVDF/PEPy-TP/5% GNS porous composites having a tremendous electrical conductivity and the dielectric constant value is 56 at 1 MHz and their conductivity of this polymer porous composites value is determined to be 4.9 × 10−6 S/cm at 100 kHz, respectively.