This paper presents a hybrid method integrating modified NSGA-II and TOPSIS, used for lightweight design of the front sub-frame of a passenger car. Firstly, the FE model of the sub-frame is constructed and is validated by modal test. Then, the strength performance of the sub-frame is analyzed under four typical load conditions consisting of braking, acceleration, steady state cornering and vertical bump. After that, a parameterized model of the sub-frame, in which 12 geometric parameters are defined as design variables, is developed based on the mesh morphing technology. Subsequently, modified NSGA-II is employed for multi-objective optimization of the sub-frame considering weight, maximum von-Mises stress and first order natural frequency as three conflicting objective functions. Accordingly, a set of Pareto-optimal solutions are obtained from the optimization process. Finally, the entropy weight theory and TOPSIS method are adopted to rank all these solutions from the best to the worst for determining the best compromise solution. In addition, the effectiveness of the proposed hybrid lightweight design method is demonstrated by the comparisons among baseline design and optimum solutions.