The power battery configuration of an extended-range electric vehicle directly affects the overall performance of the vehicle. Optimization of the output voltage of the power battery can improve the overall power and economy of the vehicle to ensure its safe operation. Factors affecting the output voltage of power batteries under different operating conditions, such as nominal voltage and the number of series and parallel connections of the battery cells, have been studied. This study uses AVL Cruise to establish an overall model of an extended-range electric vehicle to simulate the output voltage characteristics under the different operating conditions of the NEDC (New European Driving Cycle), WLTC (World Light Vehicle Test Cycle) and CLTC (China Light Duty Vehicle Test Cycle). The influence of the output voltage of the power battery under different operating conditions is studied to ensure that the power battery can output energy with high efficiency. The operating conditions have an impact on the output voltage with an idle voltage fluctuation of the operating conditions. The nominal voltage variation and the number of series and parallel connections of the battery cells affect the frequency and time of breakdown.