Ruthenium(II) and osmium(II) complexes [M(C^N^C)(N^N)L](n+) (L = Cl(-), n = 1; L = CH3CN, t-BuNC, n = 2) containing a neutral tridentate N-heterocyclic carbene (NHC)-based pincer ligand, either 2,6-bis(1-butylimidazol-2-ylidene)pyridine (C(1)^N^C(1)) or 2,6-bis(3-butylbenzimidazol-2-ylidene)pyridine (C(2)^N^C(2)), and a neutral 2,2'-bipyridine-type aromatic diimine have been prepared. Investigations into the effects of varying M (Ru and Os), C^N^C, N^N, and L on the structural, electrochemical, absorption, and emission characteristics associated with [M(C^N^C)(N^N)L](n+) are presented. Interestingly, spectroscopic findings and time-dependent density functional theory (TD-DFT) calculations in this work support a dπ(Ru(II)/Os(II)) → π*(N^N) metal-to-ligand charge transfer (MLCT) assignment for the lowest-energy transition in [M(C^N^C)(N^N)L](n+) and not a dπ(Ru(II)/Os(II)) → π*(C^N^C) MLCT assignment. This is in stark contrast to [Ru(tpy)(bpy)Cl](+) and [Os(tpy)(bpy)Cl](+) (tpy = 2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine) for which the lowest-energy transitions are assigned as dπ(Ru/Os) → π*(tpy) MLCT transitions. [Ru(II)(C^N^C)(N^N)L](n+) is emissive with emission maxima of around 600-700 nm observed upon photoexcitation of their dπ(Ru(II)) → π*(N^N) MLCT bands. The electronic structures for [Ru(C^N^C)(N^N)Cl](0) have also been probed by spectroelectrochemistry, electron paramagnetic resonance (EPR) spectroscopy, and DFT calculations, which reveal that the lowest unoccupied molecular orbitals (LUMOs) for [Ru(C^N^C)(N^N)Cl](+) are N^N-based.