A new screening procedure is described that uses docking calculations to design enhanced agonist peptides that bind to major histocompatibility complex (MHC) class I receptors. The screening process proceeds via single mutations of one amino acid at the positions that directly interact with the MHC receptor. The energetic and structural effects of these mutations have been studied using fragments of the original ligand that vary in length. The results of these docking studies indicate that the mutant affinity ranking of long peptides can be practically reproduced with a screening approach performed using fragments of six residues. Fragments of four and five residues could mimic, in some cases, the structural arrangement of the side chains of the full-length peptide. We have compared the structural and energetic results of the docking calculations with experimental data using three unrelated ligand peptides that differ greatly in their affinity for the MHC complex. Analysis of the affinity of the fragments led to the identification of three important parameters in the construction of fragments that mimic the structural and energetic properties of the full-length ligand: the length of the fragment; its intermolecular energy; and the number and localization, internal or terminal, of the anchor residues. The results of this new peptide-design methodology have been applied to suggest new peptides derived from the MUC1-8 peptide that could be used as murine vaccines that trigger the immune response through the MHC class I protein H-2K(b).