Experimental investigations of the strength of small objects – such as micropillars or nanowires – often point towards a trend of increasing strength with decreasing dimension,1–3 approximating the theoretical shear strength when the size drops to the lower nanometer region.1–4 The observation of theoretical strength in defect-free crystals, such as whiskers, irrespective of their size exemplifies that the trend of smaller is stronger is related to the defect structure.5–7 The interaction of dislocations with the surface is another important factor, as is evidenced by in situ observation of large recoverable flow-stress changes during interfacial charging or electrosorption.8 Irrespective of its microscopic origin, the high strength at small size suggests a search for design strategies that yield high-strength materials exploiting the mechanical properties of metal nanostructures. A key challenge, namely assembling many (1018 for 1 cm3 of material with a 10 nm structure size) nanoscale objects into a macroscopic body, can be overcome by synthesis via dealloying.9–11 The process provides millimeter- or centimeter-sized monolithic samples consisting of a homogeneous network structure of nanoscale “ligaments” with uniform size that can be controlled down to well below 10 nm.12, 14 Investigations by transmission electron microscopy, focused ion beam imaging, and electron backscatter diffraction have established that nanoporous metals prepared in this way are polycrystalline with a grain size of 10–100 μm.15, 16 Each micrometer-sized grain is nanoporous, so that neighboring ligaments share the same crystal lattice. In other words, the local structure in volumes of, say, 1 μm3, is that of a single crystal containing a contiguous nanoscale pore network. The mechanical behavior of these materials obeys scaling equations derived for foams with macroscopic porosity, and the local strength of the ligaments follows the same3, 17–19 or similar16, 20 trends as individual nanowires. The material, and in particular nanoporous gold (npg), has thus been studied as a model system for size-effects on the plasticity of nanostructures.