The lifting Hele-Shaw cell setup is a popular modification of the classic, fixed-gap, radial viscous fingering problem. In the lifting cell configuration, the upper cell plate is lifted such that a more viscous inner fluid is invaded by an inward-moving outer fluid. As the fluid-fluid interface contracts, one observes the rising of distinctive patterns in which penetrating fingers having rounded tips compete among themselves, reaching different lengths. Despite the scholarly and practical relevance of this confined lifting flow problem, the impact of interfacial rheology effects on its pattern-forming dynamics has been overlooked. Authors of recent studies on the traditional injection-induced radial Hele-Shaw flow and its centrifugally driven variant have shown that, if the fluid-fluid interface is structured (i.e., laden with surfactants, particles, proteins, or other surface-active entities), surface rheological stresses start to act, influencing the development of the viscous fingering patterns. In this paper, we investigate how interfacial rheology affects the stability as well as the shape of the emerging fingered structures in lifting Hele-Shaw flows, at linear and early nonlinear dynamic stages. We tackle the problem by utilizing the Boussinesq-Scriven model to describe the interface and by employing a perturbative mode-coupling scheme. Our linear stability results show that interfacial rheology effects destabilize the interface. Furthermore, our second-order findings indicate that interfacial rheology significantly alters intrinsically nonlinear morphological features of the shrinking interface, inducing the formation of narrow sharp-tip penetrating fingers and favoring enhanced competition among them.
Read full abstract