Abstract

The elastic fingering phenomenon occurs when two confined fluids are brought into contact, and due to a chemical reaction, the interface separating them becomes elastic. We study elastic fingering pattern formation in Newtonian fluids flowing in a lifting (time-dependent gap) Hele-Shaw cell. Using a mode-coupling approach, nonlinear effects induced by the interplay between viscous and elastic forces are investigated and the weakly nonlinear behavior of the fluid-fluid interfacial patterns is analyzed. Our results indicate that the existence of the elastic interface allows the development of unexpected morphological behaviors in such Newtonian fluid flow systems. More specifically, we show that depending on the values of the governing physical parameters, the observed elastic fingering structures are characterized by the occurrence of either finger tip splitting or side branching. The impact of the elastic interface on finger-competition events is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.