Research into the use of eco-friendly materials, such as natural fibers, in brake pads has gained momentum in the last few decades. This can be attributed to the potential of natural fibers to replace traditional materials in tribological applications such as braking pads. The harmful impact of the commonly-used brake pad materials, such as metal and mineral fibers, on human health and the environment necessitates the development of eco-friendly alternatives. Natural fibers, such as banana peels, palm kernels, and palm slag, have been shown to be a viable replacement for traditional brake pad materials. This article reviews the literature on the use of different natural fibers in brake pads and their impact on the physical, mechanical, and tribological properties. Trends for density, porosity, hardness, coefficient of friction (COF), and wear rate are observed. The recommended formulations to yield the optimum properties, according to the perspective of several studies, are showcased. In addition, the effect of asbestos material and natural fibers on life-cycle assessment and CO2 emission is highlighted. This article is an attempt to provide a foundation for future researchers in the field of natural fiber-reinforced composites for brake pad applications.