AbstractThe scarcity of lithium resources and the increasing volume of spent lithium‐ion batteries (LIBs) exacerbate the imbalance between lithium supply and demand. The development of efficient recovery strategies of valuable lithium ion (Li+) from spent LIBs and their subsequent utilization presents both significant opportunities and challenges. Here, we propose an innovative approach for Li+ recovery from spent lithium iron phosphate (LiFePO4) batteries (LFPs) and its subsequent utilization in alkaline zinc‐ferricyanide flow batteries (AZFFBs). Utilizing a redox‐mediated reaction, we achieve exceptional Li+ recovery efficiency from spent LFPs. Furthermore, the recovered Li+ in solution leads to the elevated ionic strength in the electrolyte, enhancing the concentration of [Fe(CN)6]4− to a remarkable level of 1.74 M. Utilizing the above catholyte, an AZFFB cell demonstrates the cycling life extending to 11 000 cycles with a degradation rate as low as 0.00019% per cycle and 0.09% per day at a current density of 120 mA cm−2. This study introduces a straightforward and efficient protocol that eliminates additional intermediate processes, achieving effective Li+ recovery from spent LFPs and subsequent utilization in flow batteries. The resulting AZFFB exhibits high energy density and long lifespan, positioning it as a promising candidate for large‐scale energy storage solutions.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
23448 Articles
Published in last 50 years
Articles published on Life
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
24532 Search results
Sort by Recency