Abstract
Lithium-ion battery (LIB) fire in a tunnel can generate a high-temperature environment, massive toxic and harmful smoke in a short period. This work carried out a series of thermal runaway (TR) experiments on large prismatic lithium cells in a model tunnel. Results showed that the flame height of LIBs with above 50 % SOC was above 40 cm for much time of the stage (Ⅰ) and (Ⅱ). The average flame height is further proposed to quantify the flame profile at different phases. The greater the SOC was, the higher the ceiling temperature and peak CO concentration were also relatively. For example, while decreasing the distance to the fire source from 0 m to -0.7 m, the peak ceiling temperature of 25 Ah batteries with 100 % SOC decreases from 309 °C to 118 °C, with a decay rate of 62 %. The CO concentration showed a comparable variation pattern to the tunnel ceiling temperature. Finally, a dimensionless relationship was employed to describe the ceiling temperature decay. Meanwhile, the ceiling maximum temperature rise for different capacity battery fires in a tunnel was integrated into a relational correlation. The study results are expected to further understand the battery fire hazards in tunnel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.