Nanotechnology has various applications in all branches of science, including engineering, medicine, pharmacy, and other related fields. Conventional techniques, such as the chemical reduction approach, which produces nanoparticles (NPs) using various hazardous chemicals, offer several health risks due to their toxicity and raise serious environmental concerns. In contrast, other techniques are expensive and need a lot of energy. More than 70 % of pathogenic bacterial strains have developed resistance to at least one class of antibiotics, leading to an increase in life-threatening bacterial infections that pose a significant health risk. However, the creation of NPs by biogenic synthesis is risk-free for the environment and clean enough for biological use. This study was aimed at synthesis of novel Moringa oleifera mediated starch capped silver-zinc NPs and green synthesis of ZnO nanoparticles from Aloe vera, papaya, and Lactobacillus plantarum. Antimicrobial activity of both NPs was tested against Gram-negative antibiotic-resistant bacteria Pseudomonas aeruginosa, Gram-positive bacteria Staphylococcus aureus (ATCC 6538), and two foodborne pathogens Listeria monocytogenes and Campylobacter jejuni. Ultraviolet–visible spectroscopy, Fourier Transform Infrared Spectroscopy, and Scanning Electron Microscopy were used for characterization. Majority of the research studies stress the flexibility, repeatability, and desirable features of the metals, polymers, and plant components employed in the production of biomedical nanoparticles. Such an intuitive approach provides several advantages, particularly a reasonable total expense, compliance with healthcare and pharmaceutical implementations, and the ability to produce massive volumes for industrial use. The novelty of the presented work lies in the unusual combination of silver, starch, and zinc oxide nanoparticles using Moringa oleifera, which is an eco-friendly alternative to chemical-based methods. This research exhibits the formation of well-defined nanoparticles with strong antibacterial activity against a wide range of pathogens, giving us insights into their potential applications in various biomedical fields.
Read full abstract