To mitigate environmental emissions in the industrial nanosilica sector and promote its sustainable development, the life cycle assessment (LCA) method is employed to evaluate the environmental impacts throughout the life cycle of industrial precipitated nanosilica. This LCA spans from the acquisition and transportation of raw materials to the production of nanosilica. By identifying the critical contributing factors, effective optimization strategies have been proposed to enhance the environmental performance of the nanosilica life cycle. The effects of electricity, alkalis, acids, and steam on the life cycle emission factors of nanosilica were examined. The results indicate that substituting traditional coal power and steam with cleaner alternatives like wind energy, hydroelectric power, and solar power (both photovoltaic and thermal), as well as biogas steam, can lead to a significant reduction in the life cycle emission factors of nanosilica, ranging from 50% to 90%. Notably, the types of acids and alkalis used only significantly reduce certain environmental factors. These findings provide valuable theoretical insights and practical guidance for the industrial nanosilica sector, particularly in the areas of energy conservation, emission reduction, and the transition towards a lower-carbon economy.
Read full abstract