Abstract
To mitigate environmental emissions in the industrial nanosilica sector and promote its sustainable development, the life cycle assessment (LCA) method is employed to evaluate the environmental impacts throughout the life cycle of industrial precipitated nanosilica. This LCA spans from the acquisition and transportation of raw materials to the production of nanosilica. By identifying the critical contributing factors, effective optimization strategies have been proposed to enhance the environmental performance of the nanosilica life cycle. The effects of electricity, alkalis, acids, and steam on the life cycle emission factors of nanosilica were examined. The results indicate that substituting traditional coal power and steam with cleaner alternatives like wind energy, hydroelectric power, and solar power (both photovoltaic and thermal), as well as biogas steam, can lead to a significant reduction in the life cycle emission factors of nanosilica, ranging from 50% to 90%. Notably, the types of acids and alkalis used only significantly reduce certain environmental factors. These findings provide valuable theoretical insights and practical guidance for the industrial nanosilica sector, particularly in the areas of energy conservation, emission reduction, and the transition towards a lower-carbon economy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.