In the process of mapping outdoor undulating and flat roads, existing LiDAR SLAM systems often encounter issues such as map distortion and ghosting. These problems arise due to the low vertical resolution of multi-line LiDAR, which easily leads to the occurrence of odometry height drift during the mapping process. To address this challenge, this study propose a novel LiDAR SLAM system named SOHD-LOAM, designed specifically to suppress odometry height drift. This system encompasses several critical components, including data preprocessing, front-end LiDAR odometry, back-end LiDAR mapping, loop detection, and graph optimization. SOHD-LOAM leverages the road gradient limitation algorithm and the height smoothing algorithm as its core, while also integrating the Kalman filter, loop detection, and graph optimization techniques. To evaluate the performance of SOHD-LOAM, the comprehensive experiments are conducted with using KITTI datasets and real-world scenes. The experimental results demonstrate that SOHD-LOAM achieves superior accuracy and robustness in global odometry compared to the state-of-the-art LEGO-LOAM. Specifically, the height error of the sequences 00, 05 experiment was found to be 40.62% and 61.92% lower than that of LEGO-LOAM. Additionally, the maps generated by SOHD-LOAM exhibit no distortion or ghosting, thereby significantly enhancing map quality.
Read full abstract