Soil hydrology, nutrient availability, and forest disturbance determine the variation of tropical tree species composition locally. However, most habitat filtering is explained by tree species' hydraulic traits along the hydrological gradient. We asked whether these patterns apply to lianas. At the community level, we investigated whether hydrological gradient, soil fertility, and forest disturbance explain liana species composition and whether liana species-environment relationships are mediated by leaf and stem wood functional traits. We sampled liana species composition in 18 1-ha plots across a 64 km2 landscape in Central Amazonia and measured eleven leaf and stem wood traits across 115 liana species in 2000 individuals. We correlated liana species composition, summarized using PCoA with the functional composition summarized using principal coordinate analysis (PCA), employing species mean values of traits at the plot level. We tested the relationship between ordination axes and environmental gradients. Liana species composition was highly correlated with functional composition. Taxonomic (PCoA) and functional (PCA) compositions were strongly associated with the hydrological gradient, with a slight influence from forest disturbance on functional composition. Species in valley areas had larger stomata size and higher proportions of self-supporting xylem than in plateaus. Liana species on plateaus invest more in fast-growing leaves (higher SLA), although they show a higher wood density. Our study reveals that lianas use different functional solutions in dealing with each end of the hydrological gradient and that the relationships among habitat preferences and traits explain lianas species distributions less directly than previously found in trees.
Read full abstract