In this work, the first and second dissociative potential curves of adenineLi+ (ADLi+), guanineLi+ (GUALi+), cytosineLi+(CYTLi+), and thymineLi+ (THYLi+) complexes, related to the dissociation of their LiO and LiN bonds, have been calculated in the gas phase and water, separately. For this purpose, the fifteen excited potential curves, in order of increasing energy, were calculated for each complex and the dissociative potential curves were distinguished from them considering the conical intersection points. The time-dependent density functional theory (TD-DFT) method employing the M06-2X functional was used for the calculations. It was observed that the electron transfer from the DNA base to the Li+ took place during the dissociation of complexes in the gas phase. The electrostatic field of water blocked this charge transfer and led to the excited DNA base and Li+ in its ground state. The vertical excitation energy for the desorption of the Li fragment as a neutral and cation species from the DNA bases was determined. The effect of the interaction site of Li+ on the dissociative potential curves was also investigated.
Read full abstract