A sol–gel deposition approach was applied for obtaining nanostructured Li-doped ZnO thin films. ZnO:Li films were successfully spin-coated on quartz and silicon substrates. The evolution of their structural, vibrational, and optical properties with annealing temperature (300–600 °C) was studied by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), UV-VIS spectroscopic, and field emission scanning electron microscopic (FESEM) characterization techniques. It was found that lithium doping maintains the wurtzite arrangement of ZnO, with increasing crystallite sizes when increasing the annealing temperature. Analysis of the FTIR spectra revealed a broad main absorption band (around 404 cm−1) for Li-doped films, implying the inclusion of Li into the ZnO lattice. The ZnO:Li films were transparent, with slightly decreased transmittance after the use of higher annealing temperatures. The porous network of undoped ZnO films was transformed to a denser, grained, packed structure, induced by lithium doping.
Read full abstract