Network pharmacology, molecular docking, and in vivo and in vitro experiments were employed to study the molecular mechanism of Blaps rynchopetera Fairmaire in the treatment of non-small cell lung cancer(NSCLC). The components of B. rynchopetera were collected by literature review, and the active components were screened out through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). PharmMapper was used to obtain the targets of the active components. The targets of NSCLC were obtained from DrugBank, GeneCards, OMIM, TTD, and PharmGKB. The Venn diagram was drawn to identify the common targets shared by the active components of B. rynchopetera and NSCLC. The "drug component-target" network and protein-protein interaction(PPI) network were constructed by Cytoscape, and the key targets were screened by Centiscape. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment of the above key targets were performed by DAVID. AutoDock and PyMOL were used for the molecular docking between the key targets and corresponding active components. A total of 31 active components, 72 potential targets, and 11 key targets of B. rynchopetera against NSCLC were obtained. The active components of B. rynchopetera had good binding activity with key targets. Further, the serum containing B. rynchopetera was prepared and used to culture human lung adenocarcinoma A549 cells. The CCK-8 assay was employed to determine the inhibition rates on the growth of A549 cells in blank control group and those exposed to different concentrations of B. rynchopetera-containing serum, cisplatin, and drug combination(B. rynchopetera-containing serum+cisplatin) for different time periods. The cell migration and invasion of A549 cells were detected by cell scratch assay and Transwell assay, respectively. Western blot was employed to determine the expression levels of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X(Bax), caspase-3, cell division cycle 42(CDC42), proto-oncogene tyrosine-protein kinase SRC, and vascular endothelial growth factor(VEGF) in A549 cells. C57BL/6 mice were inoculated with Lewis cells and randomly assigned into a model control group, a B. rynchopetera group, a cisplatin group, and a drug combination(B. rynchopetera+cisplatin) group, with 12 mice per group. The body weight and the long diameter(a) and short diameter(b) of the tumor were monitored every other day during treatment, and the tumor volume(mm~3) was calculated as 0.52ab~2. After 14 days of continuous medication, the mice were sacrificed for the collection of tumor, spleen, and thymus, and the tumor inhibition rate and immune organ indexes were calculated. The tissue morphology of tumors was observed by hematoxylin-eosin(HE) staining, and the positive expression of Bax, Bcl-2, caspase-3, CDC42, SRC, and VEGF in the tumor tissue was detected by immunohistochemistry. The results indicated that B. rynchopetera and the drug combination regulated the expression levels of Bax, Bcl-2, caspase-3, CDC42, SRC, and VEGF to inhibit the proliferation, migration, and invasion of A549 cells and Lewis cells, thus playing a role in the treatment of NSCLC via multiple ways.