1. The effects of microstimulation of the locus coeruleus (LC) region on the spontaneous discharge and the response of SI neurons to natural and electrical stimulation of the skin have been investigated in 26 urethane anesthetized Sprague-Dawley rats. In particular, one or two air puffs, 5-10 msec in duration, 1-2 psi, usually separated by an interval of 40 msec, were applied on the hairy skin of the wrist or the forepaw at the presentation rate of 1/sec. For units unresponsive to air puffs, similar presentation of low intensity electrical stimuli (0.2-5.0 V, 0.2-0.4 msec pulses) were applied through two needles inserted on the most effective area of the skin. Both natural and electrical stimulations of the skin were applied under control conditions, as well as 50 msec after a 250 msec train of 0.3 msec pulses at 40 Hz. 20-30 microA applied stereotaxically to the LC complex through a tungsten microelectrode. 2. Not all cortical units exhibited spontaneous discharge. Most of the units, however, which were spontaneously active, were inhibited by electrical stimulation of the LC complex, while the remaining ones were excited. The sites of stimulation, which included either the LC proper or the locus subcoeruleus, were identified following both anatomical and physiological criteria. 3. SI neurons recorded at sites between 400 and 950 microns below the surface of the cortex, thus being most likely granule cells of layers III and IV, responded to cutaneous stimuli with spikes which occurred with a latency of 20-30 msec in response to single air puffs and a latency of 15-20 msec in response to single electrical pulses to the skin. In both instances the response to the second stimulus applied at the interstimulus interval of 40 msec was markedly reduced or abolished due to postexcitatory inhibition following the response to the first stimulus (in-field inhibition). In contrast, units particularly located at or below 1000 microns from the cortical surface, which were of very large size probably corresponding to large layer V pyramidal cells, were often difficult to activate with air puffs applied at the centre of the receptive field (RF) and were submitted to electrical stimulation of the skin. 4. Among the 59 isolated SI units tested either to air puffs (45 neurons) or to electrical skin stimulation (14 neurons), 15 units (i.e., 25.4%) were facilitated, while 12 units (i.e., 20.3%) were inhibited following stimulation of the LC complex. 5. A marked feature of the facilitatory effects which usually involved the predominant response to the first air puff, but also the smaller response to the second puff, was that the increase in the number of spikes per stimulus was accompanied by a temporal focusing of the responses characterized by a clear tightening of the latency and narrowing of the peak of activity, which was often accompanied by some level of tonic inhibition of the background discharge. Thus, LC stimulation increased the signal-to-noise ratio of SI neuronal responses to skin stimulation. When inhibitory effects were induced by LC stimulation, they clearly affected the unit response to the first air puff, which was severely depressed. However, the response to the second puff could be facilitated, suggesting that LC stimulation might have produced inhibition of those inhibitory interneurons responsible for the postexcitatory inhibition of the units under examination. Evidence for spatial focusing of the response was not easily documented. In some units, however, LC stimulation produced either facilitation of the responses to puffs at the receptive field center and inhibition of the responses to puffs at the edge at the receptive field or vice versa. 6. Since the LC complex contains in the rat a predominant population of noradrenergic neurons, it is likely that the effects described above were mainly due to activation of these noradrenergic neurons. 7. (ABSTRACT TRUNCATED)
Read full abstract