Although the impact of acoustic challenge on speech processing and memory increases as a person ages, older adults may engage in strategies that help them compensate for these demands. In the current preregistered study, older adults (n = 48) listened to sentences-presented in quiet or in noise-that were high constraint with either expected or unexpected endings or were low constraint with unexpected endings. Pupillometry and EEG were simultaneously recorded, and subsequent sentence recognition and word recall were measured. Like young adults in prior work, we found that noise led to increases in pupil size, delayed and reduced ERP responses, and decreased recall for unexpected words. However, in contrast to prior work in young adults where a larger pupillary response predicted a recovery of the N400 at the cost of poorer memory performance in noise, older adults did not show an associated recovery of the N400 despite decreased memory performance. Instead, we found that in quiet, increases in pupil size were associated with delays in N400 onset latencies and increased recognition memory performance. In conclusion, we found that transient variation in pupil-linked arousal predicted trade-offs between real-time lexical processing and memory that emerged at lower levels of task demand in aging. Moreover, with increased acoustic challenge, older adults still exhibited costs associated with transient increases in arousal without the corresponding benefits.