Aging is a complex biological process characterized by gradual and irreversible functional deterioration, strongly associated with oxidative stress. Pentagalloyl glucose (PGG) has attracted increasing attention due to its potent antioxidant and anti-stress properties. This study investigated the potential of PGG to mitigate the aging process under stress in RAW 264.7 cells and Caenorhabditis elegans models. The expression of vital genes associated with stress was also measured to explain the action mechanism of PGG in C. elegans. The findings showed that PGG supplementation not only significantly enhanced the stress tolerance of RAW 264.7 cells, but also prolonged lifespan and reduced the ROS and lipofuscin accumulation in C. elegans induced by stress. Meanwhile, the improvement effect of PGG on delaying aging development was also manifested in the protection of mitochondrial function and neuronal integrity. Moreover, daf-16 nuclear translocation and sod-3 expression were significantly enhanced by PGG to delay the aging process. Mechanistically, PGG might alleviate aging by improving daf-16, sod-3, ctl-1, and gst-4 levels in the DAF-16/FOXO pathway and upregulating skn-1 and gst-4 expression in the SKN-1/Nrf2 pathway. Our study provided novel insights into the role of PGG in combating stress-induced aging.