Calycosin‑7‑O‑β‑D‑glucoside (CG), a major active ingredient of Astragali Radix, exerts neuroprotective effects against cerebral ischemia; however, whether the effects of CG are associated with mitochondrial protection remains unclear. The present study explored the role of CG in improving mitochondrial function in a HT22 cell model of oxygen‑glucose deprivation/reperfusion (OGD/R). The Cell Counting Kit‑8 assay, flow cytometry, immunofluorescence and western blotting were performed to investigate the effects of CG on mitochondrial function. The results demonstrated that mitochondrial function was restored after treatment with CG, as indicated by reduced mitochondrial reactive oxygen species levels, increased mitochondrial membrane potential and improved mitochondrial morphology. Overactivated mitophagy was revealed to be inhibited by the regulation of proteins involved in fission [phosphorylated‑dynamin‑related protein 1 (Drp1) and Drp1] and mitophagy (LC3, p62 and translocase of outer mitochondrial membrane 20), and mitochondrial biogenesis was demonstrated to be enhanced by increased levels of sirtuin 1 (SIRT1) and peroxisome proliferator‑activated receptor γ coactivator‑1α (PGC‑1α). In addition, neuronal apoptosis was ameliorated by CG, as determined by a decreased rate of apoptosis, and levels of caspase‑3 and Bcl‑2/Bax. In conclusion, the present study demonstrated that CG may alleviate OGD/R‑induced injury by upregulating SIRT1 and PGC‑1α protein expression, and reducing excessive mitochondrial fission and overactivation of mitophagy.
Read full abstract