Systemic juvenile idiopathic arthritis (sJIA) is a common chronic disease occurring in children. Increasing studies have demonstrated that long noncoding RNAs (lncRNAs) play important roles in the pathogenesis of diverse human diseases. This study aimed to explore the role of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and its mechanism in sJIA. We found that the expression of MALAT1, the plasma level of pro-inflammatory cytokines (IL-6, IL-17, IL-1β, and TNF-α) as well as MMP-8 and MMP-9 production were significantly elevated in sJIA patients. Moreover, we observed that the production of these cytokines in peripheral blood mononuclear cells (PBMCs) from sJIA patients were reduced after MALAT1 knockdown. Furthermore, bioinformatics analysis predicted that MALAT1 might bind to miR-150-5p and ZBTB4 was a downstream target gene of miR-150-5p. Besides, rescue assays revealed that MALAT1 knockdown-mediated suppressive effects on cytokine production could be reversed by ZBTB4 overexpression. In addition, MALAT1 activated the JAK/STAT signaling by upregulating ZBTB4 expression. In summary, our findings demonstrated that MALAT1 promoted pro-inflammatory cytokine and MMP production by targeting the miR-150-5p/ZBTB4 axis through JAK/STAT signaling pathway in sJIA, suggesting that MALAT1 may have a potential diagnostic biomarker for the pathogenesis and therapy of sJIA.