Abstract— A high‐pigment (hp) mutant, which shows exaggerated phytochrome responses and three other genotypes of Lycopersicon esculenrum Mill. cv. Ailsa Craig: the aurea (au) mutant deficient in the bulk light‐labile phytochrome (PI) pool, the au, hp double mutant, and their isogenic wild type, were used in this study. Measurements of phytochrome destruction in red light (R) revealed that the exaggerated responses of the hp mutant are not caused by a higher absolute phytochrome level or a reduced rate of phytochrome destruction. Fluence‐response relationships for anthocyanin synthesis after a blue‐light pretreatment were studied to test if the hp mutant conveys hypersensitivity to the far‐red light (FR)‐absorbing form of phytochrome (Pfr), i.e. the threshold of Pfr required to initiate the response is lower. The response range for the hp mutant and wild type was identical, although the former exhibited a 6‐fold larger response. Moreover, the kinetics of anthocyanin accumulation in continuous R were similar in the wild‐type and hp‐mutant seedlings, despite the latter accumulating 9‐fold more anthocyanin. Since the properties of phytochrome are the same, the hp mutation appears to affect the state of responsiveness amplification, i.e. the same amount of Pfr leads to a higher response in the hp mutant. We therefore propose that the hp mutation is associated with an amplification step in the phytochrome transduction chain. Escape experiments showed that the anthocyanin synthesis after different light pretreatments terminated with a R pulse was still 50% FR reversible after 4–6 h darkness, indicating that the Pfr pool regulating this response must be relatively stable. However, fluence‐rate response relationships for anthocyanin synthesis and hypocotyl growth induced by a 24‐h irradiation with 451, 539, 649, 693, 704 and 729 nm light showed no or a severely reduced response in the au and au, hp mutants, suggesting the importance of PI in these responses. We therefore propose that the capacity for anthocyanin synthesis (state of responsiveness amplification) could be established by PI, while the anthocyanin synthesis is actually photoregulated via a stable Pfr pool. The Hp gene product is proposed to be an inhibitor of the state of responsiveness amplification for responses controlled by this relatively stable Pfr species.