To study the effect of calcitonin gene-related peptide (CGRP) on apoptosis and autophagy of mouse MC3T3-E1 osteoblast and their interaction and to further clarify protective mechanism of CGRP on osteoblasts. MC3T3-E1 osteoblasts of mouse were cultured in vitro. Western blot and flow cytometry were used to detect expressions of microtubule-associated protein 1 light chain 3 (LC3) and P62 protein of MC3T3-E1 osteoblasts cultured with serum culture and serum-free (serum starvation) culture. Western blot was also used to detect expressions of LC3 and P62 protein of MC3T3-E1 osteoblast cultured at different concentrations (10⁻¹⁰, 10⁻⁹, 10⁻⁸, and 10⁻⁷ mol·L⁻¹) or without added CGRP. MC3T3-E1 osteoblasts were treated with 10⁻⁸ mol·L⁻¹ CGRP at different times (2, 6, 12, 24, 48, and 72 h), protein expression levels of LC3 were assessed by Western blot and flow cytometry, and changes in autophagosome in cells were detected by monodansylcadaverin staining. Autophagy inhibitor 3-methyladenine (3-MA) was used to pretreat MC3T3-E1 osteoblasts. Cells were then treated with or without CGRP for 24 h. Flow cytometry was used to detect apoptosis level. Under serum starvation conditions, LC3Ⅱ expression and apoptosis of osteoblasts increased compared with that of serum culture. Under 3-MA pretreatment and serum starvation conditions, LC3Ⅱ expression of osteoblasts increased compared with that of serum culture (P<0.01). Compared with serum culture, serum starvation culture with or without CGRP significantly increased expression level of LC3 and reduced expression level of P62. LC3Ⅱ/Ⅰ of osteoblasts was the highest under serum starvation and 10⁻⁸ mol·L⁻¹ CGRP conditions. Serum starvation and 10⁻⁸ mol·L⁻¹ CGRP culture inhibited apoptosis of osteoblasts and promoted synthesis of autophagosome. Apoptosis of osteoblasts increased after 3-MA pretreatment, and CGRP reversed inhibitory effects of 3-MA CGRP on apoptosis. CGRP can increase autophagy of MC3T3-E1 osteoblasts under serum starvation conditions. CGRP may also inhibit apoptosis of MC3T3-E1 osteoblasts by promoting autophagy. .
Read full abstract