Ficus auriculata Lour. (Moraceae) is an underutilized wild edible fruit widely consumed for its nutritional properties. The present study aimed to determine the phytochemical composition and in vitro antioxidant, enzyme inhibitory, anti-inflammatory and anti-cancerous properties of the F. auriculata fruit extracts through in vitro digestion (oral, gastric and intestinal phases). The extracts were obtained by hot extraction and cold maceration methods using aqueous and methanolic solvents. Major phytoconstituents identified through LC-MS was subjected to molecular docking against the target proteins. The elemental analysis shows the presence of major elements; high levels of total phenolic compounds (124.61 ± 0.82 mg gallic acid equivalent/g), flavonoids (76.38 ± 0.82 mg quercetin equivalent/g), vitamin E (32.48 ± 0.09 mg alpha-tocopherol equivalent/g), and carbohydrate (34.59 ± 0.45 mg glucose equivalent/g) in hot extracted methanolic undigested extract (HEM UD) and high level of total protein (124.71 ± 0.34 mg bovine serum albumin equivalent/g) in cold extracted methanolic undigested fruit extract were found. HEM UD showed high antioxidant activity in 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), 2,2-diphenyl-1-picryl-hydrazyl, and superoxide radical scavenging assays with IC50 of 53.30 ± 0.57, 80.69 ± 0.12, and 65.47 ± 1.13 μg/mL, respectively. The HEM UD extract also potentially inhibited the enzyme activity of α-amylase, α-glucosidase, tyrosinase, and protein denaturation (IC50 of 67.76 ± 1.22, 83.18 ± 1.23, 87.24 ± 1.15, and 65.76 ± 0.60 μg/mL). The most potent extract (HEM UD) was studied for its anticancer effects by MTT assay against the MCF-7 and HeLa cell lines with the IC50 of 89.80 ± 0.56 and 60.76 ± 0.04 μg/mL, respectively. The LC-MS analysis elucidated ten phytoconstituents. Based on the molecular docking study, querciturone could potentially be an effective constituent in treating diabetes and inflammation-related issues. The findings indicated the ability of F. auriculata fruits as a promising functional food.