Simple SummaryRadiographic diagnosis is essential for the genetic control of canine hip dysplasia (HD). The Fédération Cynologique Internationale (FCI) scoring HD scheme is based on objective and qualitative radiographic criteria. Subjective interpretations can lead to errors in diagnosis and, consequently, to incorrect selective breeding, which in turn impacts the gene pool of dog breeds. The aim of this study was to use a computer method to calculate the Hip Congruency Index (HCI) to objectively estimate radiographic hip congruency for future application in the development of computer vision models capable of classifying canine HD. The HCI measures the percentage of acetabular coverage that is occupied by the femoral head. Normal hips are associated with an even, parallel joint surface that translates into reduced acetabular free space, which increases with hip subluxation and becomes maximal in hip dislocation. We found statistically significant differences in mean HCI values among all five FCI categories. These results demonstrate that the HCI reliably reflects the different degrees of congruency associated with HD. Therefore, it is expected that when used in conjunction with other HD evaluation parameters, such as Norberg angle and assessment of osteoarthritic signs, it can improve the diagnosis by making it more accurate and unequivocal.Accurate radiographic screening evaluation is essential in the genetic control of canine HD, however, the qualitative assessment of hip congruency introduces some subjectivity, leading to excessive variability in scoring. The main objective of this work was to validate a method-Hip Congruency Index (HCI)-capable of objectively measuring the relationship between the acetabulum and the femoral head and associating it with the level of congruency proposed by the Fédération Cynologique Internationale (FCI), with the aim of incorporating it into a computer vision model that classifies HD autonomously. A total of 200 dogs (400 hips) were randomly selected for the study. All radiographs were scored in five categories by an experienced examiner according to FCI criteria. Two examiners performed HCI measurements on 25 hip radiographs to study intra- and inter-examiner reliability and agreement. Additionally, each examiner measured HCI on their half of the study sample (100 dogs), and the results were compared between FCI categories. The paired t-test and the intraclass correlation coefficient (ICC) showed no evidence of a systematic bias, and there was excellent reliability between the measurements of the two examiners and examiners’ sessions. Hips that were assigned an FCI grade of A (n = 120), B (n = 157), C (n = 68), D (n = 38) and E (n = 17) had a mean HCI of 0.739 ± 0.044, 0.666 ± 0.052, 0.605 ± 0.055, 0.494 ± 0.070 and 0.374 ± 0.122, respectively (ANOVA, p < 0.01). Therefore, these results show that HCI is a parameter capable of estimating hip congruency and has the potential to enrich conventional HD scoring criteria if incorporated into an artificial intelligence algorithm competent in diagnosing HD.
Read full abstract