The global SARS-CoV-2 monitoring effort has been extensive, resulting in many states and countries establishing wastewater-based epidemiology programs to address the spread of the virus during the pandemic. Challenges for programs include concurrently optimizing methods, training new laboratories, and implementing successful surveillance programs that can rapidly translate results for public health, and policy making. Surveillance in Michigan early in the pandemic in 2020 highlights the importance of quality-controlled data and explores correlations with wastewater and clinical case data aggregated at the state level. The lessons learned and potential measures to improve public utilization of results are discussed.The Michigan Network for Environmental Health and Technology (MiNET) established a network of laboratories that partnered with local health departments, universities, wastewater treatment plants (WWTPs) and other stakeholders to monitor SARS-CoV-2 in wastewater at 214 sites in Michigan. MiNET consisted of nineteen laboratories, twenty-nine local health departments, 6 Native American tribes, and 60 WWTPs monitoring sites representing 45 % of Michigan's population from April 6 and December 29, 2020. Three result datasets were created based on quality control criteria. Wastewater results that met all quality assurance criteria (Dataset Mp) produced strongest correlations with reported clinical cases at 16 days lag (rho = 0.866, p < 0.05).The project demonstrated the ability to successfully track SARS-CoV-2 on a large, state-wide scale, particularly data that met the outlined quality criteria and provided an early warning of increasing COVID-19 cases. MiNET is currently poised to leverage its competency to complement public health surveillance networks through environmental monitoring for new and emerging pathogens of concern and provides a valuable resource to state and federal agencies to support future responses.