We evaluated the effects of a constant low (5-5%) and modulated (5–20%) oxygen environments on the in vitro development of bovine oocyte-cumulus-granulosa cell complexes (OCGCs) cultured in the presence or absence of an antioxidant (astaxanthin: Ax). OCGCs were cultured in a gas permeable culture device for 8 days in 5-5% O2 (±Ax) and 5–20% O2 (±Ax) culture conditions. In the oxygen modulated culture conditions, the oxygen concentration was switched from 5% to 20% on day 4 of culture. Ax promoted the viability of OCGCs (P < 0.05), but both oxygen and Ax had a significant effect on ROS production levels by OCGCs (P < 0.05). Specifically, ROS levels were significantly lower and higher under 5-5% O2 (+Ax) and 5–20% O2 (-Ax) conditions, respectively (P < 0.05), with intermediate levels observed in the 5-5% O2 (-Ax) and the 5–20% O2 (+Ax) culture conditions. The steroidogenic pattern was characterized by increasing estradiol-17β but with constant progesterone production levels regardless of culture conditions, suggesting the inhibition of luteinization-like changes in granulosa cells. OCGCs cultured in the 5–20% O2 (+Ax) had higher nuclear maturation rates (P < 0.05) that were similar to the oocytes grown in vivo. However, there was no clear difference in the subsequent cleavage rates among the 5-5% O2 (±Ax) and the 5–20% O2 (+Ax) culture conditions (P > 0.05). A constant low oxygen environment significantly promoted the blastocyst rates (P < 0.05); however, the presence of Ax in the 5–20% O2 (+Ax) condition also promoted development similar to the OCGCs cultured in the 5-5% O2 (-Ax) condition (P > 0.05). In conclusion, exposure of OCGCs to constant low oxygen or oxygen modulation in the presence of Ax promotes the healthy development of OCGCs during the 8-day IVG culture using the gas permeable culture device.