The present study aims to perform a comparative analysis of the chemical composition and thermal behavior of two distinct milk types, namely animal and plant-based. The thermal analysis revealed the presence of the following classes of compounds: hydrocarbons, heterocycles, aldehydes, ketones, amines and alcohols. All types of milk contain saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs), though the relative proportions of these vary depending on the specific milk type. Animal milk powders contain SFAs, including palmitic, stearic, and myristic acids, as well as moderate amounts of MUFAs, such as oleic and palmitoleic acids. They also contain lower PUFAs, including linoleic and alpha-linolenic acids. In contrast, plant-based milk powders, particularly soy milk powder, are rich in both linoleic and alpha-linolenic acids. Plant-based milk typically exhibits lower levels of SFAs and higher levels of MUFAs and PUFAs when compared to milk of animal origin. In conclusion, the fatty acid profiles of animal and plant-based milk powders reflect the different nutritional attributes and health implications associated with each. Thermal behavior analysis offers insights into the stability and potential flavor changes that may occur during processing and storage. The comparative analysis highlights significant differences in the chemical composition and thermal behavior of animal and plant-based milk powders.
Read full abstract