Auditory verbal hallucinations (AVHs) in schizophrenia (SCZ) are linked to brain network abnormalities. Resting-state fMRI studies often assume stable networks during scans, yet dynamic changes related to AVHs are not well understood. We analyzed resting-state fMRI data from 60 SCZ patients with persistent AVHs (p-AVHs), 39 SCZ patients without AVHs (n-AVHs), and 59 healthy controls (HCs), matched for demographics. Using graph theory, we constructed a time-varying modular structure of brain networks, focusing on multilayer modularity. Network switching rates at global, subnetwork, and nodal levels were compared across groups and related to AVH severity. SCZ groups had higher switching rates in the subcortical network compared to HCs. Increased switching was found in two thalamic nodes for both patient groups. The p-AVH group showed lower switching rates in the default mode network (DMN) and two superior frontal gyrus nodes compared to HC and n-AVH groups. DMN switching rates negatively correlated with AVH severity in the p-AVH group. Dynamic changes in brain networks, especially lower DMN and frontal region switching rates, may contribute to the development and persistence of AVHs in SCZ.
Read full abstract