Pseudoexfoliation syndrome (PXF) is the most common cause of secondary open angle glaucoma worldwide. Single nucleotide polymorphisms (SNPs) in the gene Lysyl oxidase like 1 (LOXL1) are strongly associated with the development of pseudoexfoliation glaucoma (PXFG). However, these SNPs are also present in 50–80% of the general population, suggestive of other factors being involved in the pathogenesis of PXFG. In this study, we aimed to investigate the influence of epigenetic regulation, specifically DNA methylation, on LOXL1 expression in PXFG using human tenons fibroblasts (HTFs), aqueous humour and serum samples from donors with and without PXFG. LOXL1 expression in HTFs was measured by qPCR and Western Blotting and LOXL1 concentration in aqueous humour was determined by ELISA. Global DNA methylation levels were quantified using an ELISA for 5-methylcytosine. MeDIP assays assessed the methylation status of the LOXL1 promoter region. Expression of methylation-associated enzymes (DNMT1, DNMT3a and MeCP2) were determined by qPCR and inhibited by 0.3 μM 5-azacytidine (5-aza). Results showed that LOXL1 expression was significantly decreased in PXFG HTFs compared with Control HTFs at gene (Fold change 0.37 ± 0.05, P < 0.01) level and showed a decrease, when measured at the protein level (Fold change 0.65 ± 0.42, P = 0.22), however this was not found to be significant. LOXL1 concentration was increased in the aqueous of PXFG patients compared with Controls (2.76 ± 0.78 vs. 1.79 ± 0.33 ng/ml, P < 0.01). Increased global methylation (56.07% ± 4.87% vs. 32.39% ± 4.29%, P < 0.01) was observed in PXFG HTFs compared with Control HTFs, as was expression of methylation-associated enzymes (DNMT1 1.58 ± 0.30, P < 0.05, DNMT3a 1.89 ± 0.24, P < 0.05, MeCP2 1.63 ± 0.30, P < 0.01). Methylation-associated enzymes were also increased when measured at protein level (DNMT1 5.70 ± 2.64, P = 0.04, DNMT3a 1.79 ± 1.55, P = 0.42, MeCP2 1.64 ± 1.33, P = 0.45). LOXL1 promoter methylation was increased in patients with PXFG compared to Control patients in both blood (3.98 ± 2.24, 2.10 ± 1.29, P < 0.05) and HTF cells (37.31 ± 22.0, 8.66 ± 10.40, P < 0.01). Treatment of PXFG HTFs with in 5-azacytidine increased LOXL1 expression when compared with untreated PXFG HTFs (Fold change 2.26 ± 0.67, P < 0.05). These data demonstrate that LOXL1 expression is altered in PXFG via DNA methylation and that reversal of these epigenetic changes may represent future potential therapeutic targets in the management of PXFG.
Read full abstract