The level of DNA sequence variation is reduced in regions of the Drosophila melanogaster genome where the rate of crossing over per physical distance is also reduced. This observation has been interpreted as support for the simple model of genetic hitchhiking, in which directional selection on rare variants, e.g., newly arising advantageous mutants, sweeps linked neutral alleles to fixation, thus eliminating polymorphisms near the selected site. However, the frequency spectra of segregating sites of several loci from some populations exhibiting reduced levels of nucleotide diversity and reduced numbers of segregating sites did not appear different from what would be expected under a neutral equilibrium model. Specifically, a skew toward an excess of rare sites was not observed in these samples, as measured by Tajima's D. Because this skew was predicted by a simple hitchhiking model, yet it had never been expressed quantitatively and compared directly to DNA polymorphism data, this paper investigates the hitchhiking effect on the site frequency spectrum, as measured by Tajima's D and several other statistics, using a computer simulation model based on the coalescent process and recurrent hitchhiking events. The results presented here demonstrate that under the simple hitchhiking model (1) the expected value of Tajima's D is large and negative (indicating a skew toward rare variants), (2) that Tajima's test has reasonable power to detect a skew in the frequency spectrum for parameters comparable to those from actual data sets, and (3) that the Tajima's Ds observed in several data sets are very unlikely to have been the result of simple hitchhiking. Consequently, the simple hitchhiking model is not a sufficient explanation for the DNA polymorphism at those loci exhibiting a decreased number of segregating sites yet not exhibiting a skew in the frequency spectrum.
Read full abstract