Developing persistent and smart underwater markers is critical for improving navigation accuracy and communication capabilities of autonomous underwater vehicles (AUVs). A wireless acoustic identification tag, which uses a piezoelectric transducer tuned in the broadband ultrasonic range (200-500 kHz), was experimentally demonstrated to achieve highly efficient power transfer (source-to-tag electrical power efficiency of >2% at 6 m) and concurrent high data rate and backscatter level communication (>83.3 kbit s-1, >170 dB sound pressure level at 6 m) with potential operating range ≈ 10 m based on analytical extrapolations. Parameter selection considerations dictated by the desired range and data-rate requirements in communication are presented. The transducer piezoelectric element selection, impedance matching approach, and simulation-based circuit optimization for frequency multiplexed operation are also detailed. Experimental tests benchmarking performance sensitivity to source and tag misalignment are introduced and implications for AUV operations are discussed.
Read full abstract