All chemical states of the muons in a μSR experiment have now been determined in toluene, allylbenzene and styrene. There are no “missing fractions” because the sum of the various muon-containing free-radicals equals 1- P D, where P D is the directly formed diamagnetic fraction. Use of the new technique of level crossing resonance spectroscopy has enabled yields to be determined and identification of individual isomeric radicals. For toluene, there is a total radical fraction of 0.77 and a distribution of 2.5:2:1 for ortho: meta: para addition within the ring. For allylbenzene, ≈ 70% of the muonated radicals are side chain addition products and of these nearly 40% have Mu on the second C; and, for the 30% adding to the ring, there is virtually no selectivity of site as the o: m: p ratio is the statistical ratio 2:2:1. Toluene and allylbenzene, however, differ dramatically from styrene. In styrene, 82% of the muons form radicals and 85% of these arise from formal addition of muonium to the end C of the side chain to give muonated phenylethyl radicals. The remaining 15% are seen to be distributed (2:1) between the ortho and para positions of the ring, with no addition at the meta position. The high degree of preference shown by styrene indicates strong selectivity in achieving the most stable radical. Proton hyperfine couplings for all of these radicals have also been determined.