Lipid-laden macrophages are considered as the main source of foam cells in atherosclerosis; however, the mechanism for macrophage foam cell formation remains unknown. Here, we explore the mechanism behind foam cell formation to potentially identify a novel treatment for atherosclerosis. Our data demonstrated that leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) increased in the atherosclerotic plaques of LDLR-/- mice fed with a Western diet. LRPPRC was also upregulated in mice peritoneal macrophages and RAW 264.7 cells treated with oxidative low density lipoprotein, whereas knockdown of LRPPRC by transfecting with small interfering (Si)-LRPPRC in RAW 264.7 cells decreased foam cell formation. Furthermore, Si-LRPPRC promoted autophagy and increased the expression of cholesterol efflux protein ATP-binding cassette transporter A1 in RAW 264.7 cells. Moreover, intervention with MHY1485 in RAW 264.7 cells revealed that autophagy was inhibited by LRPPRC via the Akt-mechanistic target of rapamycin pathway. Taken together, we confirm for the first time that LRPPRC is increased within the atherosclerotic plaques of mice and enhances the process of foam cell formation. The knockdown of LRPPRC inhibited foam cell formation by activating macrophage autophagy. Our findings indicate that the regulation of macrophage LRPPRC expression may be a novel strategy for ameliorating atherosclerosis.
Read full abstract