ABSTRACT Purpose Automated machine learning (AutoML) allows clinicians without coding experience to build their own deep learning (DL) models. This study assesses the performance of AutoML in detecting and localizing ocular toxoplasmosis (OT) lesions in fundus images and compares it to expert-designed models. Methods Ophthalmology trainees without coding experience designed AutoML models using 304 labelled fundus images. We designed a binary model to differentiate OT from normal and an object detection model to visually identify OT lesions. Results The AutoML model had an area under the precision-recall curve (AuPRC) of 0.945, sensitivity of 100%, specificity of 83% and accuracy of 93.5% (vs. 94%, 86% and 91% for the bespoke models). The AutoML object detection model had an AuPRC of 0.600 with a precision of 93.3% and recall of 56%. Using a diversified external validation dataset, our model correctly labeled 15 normal fundus images (100%) and 15 OT fundus images (100%), with a mean confidence score of 0.965 and 0.963, respectively. Conclusion AutoML models created by ophthalmologists without coding experience were comparable or better than expert-designed bespoke models trained on the same dataset. By creatively using AutoML to identify OT lesions on fundus images, our approach brings the whole spectrum of DL model design into the hands of clinicians.