Accurate differentiation between benign and malignant pancreatic lesions is critical for effective patient management. This study aimed to develop and validate a novel deep learning network using baseline computed tomography (CT) images to predict the classification of pancreatic lesions. This retrospective study included 864 patients (422 men, 442 women) with confirmed histopathological results across three medical centers, forming a training cohort, internal testing cohort, and external validation cohort. A novel hybrid model, Multi-Scale Large Kernel Attention with Mobile Vision Transformer (MVIT-MLKA), was developed, integrating CNN and Transformer architectures to classify pancreatic lesions. The model's performance was compared with traditional machine learning methods and advanced deep learning models. We also evaluated the diagnostic accuracy of radiologists with and without the assistance of the optimal model. Model performance was assessed through discrimination, calibration, and clinical applicability. The MVIT-MLKA model demonstrated superior performance in classifying pancreatic lesions, achieving an AUC of 0.974 (95% CI 0.967-0.980) in the training set, 0.935 (95% CI 0.915-0.954) in the internal testing set, and 0.924 (95% CI 0.902-0.945) in the external validation set, outperforming traditional models and other deep learning models (P < 0.05). Radiologists aided by the MVIT-MLKA model showed significant improvements in diagnostic accuracy and sensitivity compared to those without model assistance (P < 0.05). Grad-CAM visualization enhanced model interpretability by effectively highlighting key lesion areas. The MVIT-MLKA model efficiently differentiates between benign and malignant pancreatic lesions, surpassing traditional methods and significantly improving radiologists' diagnostic performance. The integration of this advanced deep learning model into clinical practice has the potential to reduce diagnostic errors and optimize treatment strategies.
Read full abstract