Models with vector-like leptons can strongly modify the lepton mass generation mechanism and lead to correlated effects in lepton–Higgs couplings and lepton dipole moments. Here we begin an analysis of higher-order corrections in such models by setting up a renormalization scheme with full on-shell conditions on the lepton self energies, masses and fields. A minimal set of fundamental parameters is renormalized in the MS¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\overline{\ extrm{MS}} $$\\end{document} scheme. We provide a detailed discussion of lepton mixing and redundancies at higher orders, show how the relevant counterterms can be obtained from the renormalization conditions, and determine the β-functions corresponding to the scheme. As a first application we calculate the one-loop effective muon–Higgs coupling and analyse its correlation with the muon anomalous magnetic moment ∆aμVLL\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\Delta {a}_{\\mu}^{\ extrm{VLL}} $$\\end{document}. In the interesting case of large masses and opposite-sign coupling, the lowest-order correlation implies a fixed value of ∆aμVLL\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\Delta {a}_{\\mu}^{\ extrm{VLL}} $$\\end{document} around 22.5 × 10−10, while the higher-order corrections significantly reduce this value to the interval (10 . 18) × 10−10.
Read full abstract