In Canada studies on the presence of trace organic contaminants (TrOCs) such as pharmaceuticals, personal care products, pesticides and flame retardants in lakes have primarily focused on the water column at localized scales. To address this gap, the occurrence of 44 TrOCs, representative of various types of human activities, was investigated in surface sediments (0-2cm) from 193 lakes across Canada. A total of 28 targeted TrOCs were detected, with 99.5% of the samples containing at least one detection, and one lake exhibiting up to 12 detections. The most frequently detected contaminants (> 20% of samples) were the insect-repellent diethyltoluamide (DEET), the UV filter oxybenzone, the flame retardants tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP), and triphenyl phosphate (TPP), the stimulant caffeine, and cotinine, a metabolite of the stimulant nicotine. Median reported concentrations of the targeted TrOCs ranged from 0.017pgg-1 to 359ngg-1, with a maximum value of 23,700ngg-1 observed for DEET in one lake. The geographic distribution of analyte concentrations varied by compound class: pharmaceuticals and consumer product additives were predominantly found in the more urbanized regions of Ontario and Quebec, whereas personal care products such as DEET and oxybenzone were more frequently detected in the western provinces of Canada. An environmental risk assessment based on an additive model conducted on three aquatic organisms (algae, cladocerans, and fish) revealed that 4% and 6% of the lakes posed a potentially high risk for cladocerans and algae, respectively. A geographical analysis indicated that lakes in the south of the eastern provinces of Canada presented the highest risks for all three species. These findings represent the first large-scale results detailing the extent of contamination caused by TrOCs on Canadian lake sediments. They establish reference levels that can guide future monitoring efforts and inform policy discussions aimed at protecting lake ecosystems.
Read full abstract