Cognitive reserve (CR) explains the individual resilience to neurodegeneration. The present study investigated the effect of CR in modulating brain cortical architecture. 278 individuals [110 Alzheimer's disease (AD), 104 amnestic mild cognitive impairment (aMCI) due to AD, 64 healthy subjects (HS)] underwent a neuropsychological evaluation and 3T-MRI. Cortical thickness (CTh) and fractal dimension (FD) were assessed. Years of formal education were used as an index of CR by which participants were divided into high and low CR (HCR and LCR). Within-group differences in cortical architecture were assessed as a function of CR. Associations between cognitive scores and cortical measures were also evaluated. aMCI-HCR compared to aMCI-LCR patients showed significant decrease of CTh in the right temporal and in the left prefrontal lobe. Moreover, they showed increased FD in the right temporal and in the left temporo-parietal lobes. Patients with AD-HCR showed reduced CTh in several brain areas and reduced FD in the left temporal cortices when compared with AD-LCR subjects. HS-HCR showed a significant increase of CTh in prefrontal areas bilaterally, and in the right parieto-occipital cortices. Finally, aMCI-HCR showed significant positive associations between brain measures and memory and executive performance. CR modulates the cortical architecture at pre-dementia stage only. Indeed, only patients with aMCI showed both atrophy (likely due to neurodegeneration) alongside richer brain folding (likely due to reserve mechanisms) in temporo-parietal areas. This opposite trend was not observed in AD and HS. Our data confirm the existence of a limited time-window for CR modulation at the aMCI stage.